Neighborhood Property-Based Pattern Selection for Support Vector Machines

نویسندگان

  • Hyunjung Shin
  • Sungzoon Cho
چکیده

The support vector machine (SVM) has been spotlighted in the machine learning community because of its theoretical soundness and practical performance. When applied to a large data set, however, it requires a large memory and a long time for training. To cope with the practical difficulty, we propose a pattern selection algorithm based on neighborhood properties. The idea is to select only the patterns that are likely to be located near the decision boundary. Those patterns are expected to be more informative than the randomly selected patterns. The experimental results provide promising evidence that it is possible to successfully employ the proposed algorithm ahead of SVM training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

Near-boundary Data Selection for Fast Support Vector Machines

Support Vector Machines(SVMs) have become more popular than other algorithms for pattern classification. The learning phase of a SVM involves exploring the subset of informative training examples (i.e. support vectors) that makes up a decision boundary. Those support vectors tend to lie close to the learned boundary. In view of nearest neighbor property, the neighbors of a support vector become...

متن کامل

Invariance of neighborhood relation under input space to feature space mapping

If the training pattern set is large, it takes a large memory and a long time to train support vector machine (SVM). Recently, we proposed neighborhood property based pattern selection algorithm (NPPS) which selects only the patterns that are likely to be near the decision boundary ahead of SVM training [Proc. of the 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Le...

متن کامل

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2007